Thursday, March 30, 2023

computer mouse information,कंप्यूटर क्या है कंप्यूटर की विशेषताएं

 A computer mouse (plural mice, also mouses) is a hand-held pointing device that detects two-dimensional motion relative to a surface. This motion is typically translated into the motion of a pointer on a display, which allows a smooth control of the graphical user interface of a computer.

कम्प्यूटर क्या है? “Computer एक मशीन है जो कुछ तय निर्देशों के अनुसार कार्य को संपादित करते है. और ज्यादा कहे तो Computer एक इलेक्ट्रोनिक उपकरण है जो इनपुट उपकरणों की मदद से आँकडों को स्वीकार करता है उन्हें प्रोसेस करता है और उन आँकडों को आउटपुट उपकरणों की मदद से सूचना के रूप में प्रदान करता है.”


Computer mouse

The first public demonstration of a mouse controlling a computer system was in 1968. Mice originally used two separate wheels to track movement across a surface: one in the X-dimension and one in the Y. Later, the standard design shifted to utilize a ball rolling on a surface to detect motion. Most modern mice use optical sensors that have no moving parts. Though originally all mice were connected to a computer by a cable, many modern mice are cordless, relying on short-range radio communication with the connected system.

In addition to moving a cursor, computer mice have one or more buttons to allow operations such as the selection of a menu item on a display. Mice often also feature other elements, such as touch surfaces and scroll wheels, which enable additional control and dimensional input.

Etymology

The earliest known written use of the term mouse in reference to a computer pointing device is in Bill English's July 1965 publication, "Computer-Aided Display Control", likely originating from its resemblance to the shape and size of a mouse, a rodent, with the cord resembling its tail. The popularity of wireless mice without cords makes the resemblance less obvious.

According to Roger Bates, a hardware designer under English, the term also came about because the cursor on the screen was for some unknown reason referred to as "CAT" and was seen by the team as if it would be chasing the new desktop device.

The plural for the small rodent is always "mice" in modern usage. The plural for a computer mouse is either "mice" or "mouses" according to most dictionaries, with "mice" being more common.The first recorded plural usage is "mice"; the online Oxford Dictionaries cites a 1984 use, and earlier uses include J. C. R. Licklider's "The Computer as a Communication Device" of 1968.


History

Stationary trackballs

The trackball, a related pointing device, was invented in 1946 by Ralph Benjamin as part of a post-World War II-era fire-control radar plotting system called the Comprehensive Display System (CDS). Benjamin was then working for the British Royal Navy Scientific Service. Benjamin's project used analog computers to calculate the future position of target aircraft based on several initial input points provided by a user with a joystick. Benjamin felt that a more elegant input device was needed and invented what they called a "roller ball" for this purpose.

The device was patented in 1947,but only a prototype using a metal ball rolling on two rubber-coated wheels was ever built, and the device was kept as a military secret.

Another early trackball was built by Kenyon Taylor, a British electrical engineer working in collaboration with Tom Cranston and Fred Long staff. Taylor was part of the original Ferranti Canada, working on the Royal Canadian Navy's DATAR (Digital Automated Tracking and Resolving) system in 1952.

DATAR was similar in concept to Benjamin's display. The trackball used four disks to pick up motion, two each for the X and Y directions. Several rollers provided mechanical support. When the ball was rolled, the pickup discs spun and contacts on their outer rim made periodic contact with wires, producing pulses of output with each movement of the ball. By counting the pulses, the physical movement of the ball could be determined. A digital computer calculated the tracks and sent the resulting data to other ships in a task force using pulse-code modulation radio signals. This trackball used a standard Canadian five-pin bowling ball. It was not patented, since it was a secret military project.

Engelbart's first "mouse"

Douglas Engelbart of the Stanford Research Institute (now SRI International) has been credited in published books by Thierry Bardini, Paul Ceruzzi, Howard Rhein gold, and several others as the inventor of the computer mouse. Engelbart was also recognized as such in various obituary titles after his death in July 2013.

By 1963, Engelbart had already established a research lab at SRI, the Augmentation Research Center (ARC), to pursue his objective of developing both hardware and software computer technology to "augment" human intelligence. That November, while attending a conference on computer graphics in Reno, Nevada, Engelbart began to ponder how to adapt the underlying principles of the planimeter to inputting X- and Y-coordinate data. On 14 November 1963, he first recorded his thoughts in his personal notebook about something he initially called a "bug", which in a "3-point" form could have a "drop point and 2 orthogonal wheels". He wrote that the "bug" would be "easier" and "more natural" to use, and unlike a stylus, it would stay still when let go, which meant it would be "much better for coordination with the keyboard".



In 1964, Bill English joined ARC, where he helped Engelbart build the first mouse proto type. They christened the device the mouse as early models had a cord attached to the rear part of the device which looked like a tail, and in turn resembled the common mouse. According to Roger Bates, a hardware designer under English, another reason for choosing this name was because the cursor on the screen was also referred to as "CAT" at this time.

As noted above, this "mouse" was first mentioned in print in a July 1965 report, on which English was the lead author. On 9 December 1968, Engelbart publicly demonstrated the mouse at what would come to be known as The Mother of All Demos. Engelbart never received any royalties for it, as his employer SRI held the patent, which expired before the mouse became widely used in personal computers. In any event, the invention of the mouse was just a small part of Engelbart's much larger project of augmenting human intellect.

Several other experimental pointing-devices developed for Engelbart's oN-Line System (NLS) exploited different body movements – for example, head-mounted devices attached to the chin or nose – but ultimately the mouse won out because of its speed and convenience. The first mouse, a bulky device (pictured) used two potentiometers perpendicular to each other and connected to wheels: the rotation of each wheel translated into motion along one axis. At the time of the "Mother of All Demos", Engelbart's group had been using their second generation, 3-button mouse for about a year.

First rolling-ball mouse

On 2 October 1968, three years after Engelbart's prototype but more than two months before his public demo, a mouse device named Rollkugel steue rung (German for "rolling ball control") was shown in a sales brochure by the German company AEG-Telefunken as an optional input device for the SIG 100 vector graphics terminal, part of the system around their process computer TR 86 and the TR 440 main frame. Based on an even earlier trackball device, the mouse device had been developed by the company since 1966 in what had been a parallel and independent discovery. As the name suggests and unlike Engelbart's mouse, the Telefunken model already had a ball (diameter 40 mm, weight 40 g) and two mechanical 4-bit rotational position transducers with Gray code-like states, allowing easy movement in any direction. The bits remained stable for at least two successive states to relax debouncing requirements. This arrangement was chosen so that the data could also be transmitted to the TR 86 front end process computer and over longer distance telex lines with c. 50 baud. Weighing 465 g, the device with a total height of about 7 cm came in a c. 12 cm diameter hemispherical injection-molded thermoplastic casing featuring one central push button.

As noted above, the device was based on an earlier trackball-like device (also named Rollkugel) that was embedded into radar flight control desks.This trackball had been originally developed by a team led by Rainer Mallebrein  at Telefunken Konstanz for the German Bundesanstalt für Flugsicherung  (Federal Air Traffic Control). It was part of the corresponding work station system SAP 300 and the terminal SIG 3001, which had been designed and developed since 1963. Development for the TR 440 main frame began in 1965. This led to the development of the TR 86 process computer system with its SIG 100-86 terminal. Inspired by a discussion with a university customer, Mallebrein came up with the idea of "reversing" the existing Rollkugel trackball into a moveable mouse-like device in 1966, so that customers did not have to be bothered with mounting holes for the earlier trackball device. The device was finished in early 1968, and together with light pens and trackballs, it was commercially offered as an optional input device for their system starting later that year. Not all customers opted to buy the device, which added costs of DM 1,500 per piece to the already up to 20-million DM deal for the main frame, of which only a total of 46 systems were sold or leased. They were installed at more than 20 German universities including RWTH AachenTechnical University BerlinUniversity of Stuttgart and KonstanzSeveral Rollkugel mice installed at the Leibniz Supercomputing Centre in Munich in 1972 are well preserved in a museum, two others survived in a museum at Stuttgart university, two in Hamburg, the one from Aachen at the Computer History Museum in the US, and yet another sample was recently donated to the Heinz Nixdorf Museums Forum (HNF) in Paderborn. Anecdotal reports claim that Telefunken's attempt to patent the device was rejected by the German Patent Office due to lack of inventiveness. For the air traffic control system, the Mallebrein team had already developed a precursor to touch screens in form of an ultrasonic-curtain-based pointing device in front of the display. In 1970, they developed a device named "Touchinput-Einrichtung" ("touch input facility") based on a conductively coated glass screen.

First mice on personal computers and workstations

The Xerox Alto was one of the first computers designed for individual use in 1973 and is regarded as the first modern computer to use a mouse. Inspired by PARC's Alto, the Lilith, a computer which had been developed by a team around Niklaus Wirth at ETH Zürich between 1978 and 1980, provided a mouse as well. The third marketed version of an integrated mouse shipped as a part of a computer and intended for personal computer navigation came with the Xerox 8010 Star in 1981.

By 1982, the Xerox 8010 was probably the best-known computer with a mouse. The Sun-1 also came with a mouse, and the forthcoming Apple Lisa was rumored to use one, but the peripheral remained obscure; Jack Hawley of The Mouse House reported that one buyer for a large organization believed at first that his company sold lab mice. Hawley, who manufactured mice for Xerox, stated that "Practically, I have the market all to myself right now"; a Hawley mouse cost $415. In 1982, Logitech introduced the P4 Mouse at the Comdex trade show in Las Vegas, its first hardware mouse. That same year Microsoft made the decision to make the MS-DOS program Microsoft Word mouse-compatible, and developed the first PC-compatible mouse. Microsoft's mouse shipped in 1983, thus beginning the Microsoft Hardware division of the company. However, the mouse remained relatively obscure until the appearance of the Macintosh 128K (which included an updated version of the single-button Lisa Mouse) in 1984, and of the Amiga 1000 and the Atari ST in 1985.


Operation

A mouse typically controls the motion of a pointer in two dimensions in a graphical user interface (GUI). The mouse turns movements of the hand backward and forward, left and right into equivalent electronic signals that in turn are used to move the pointer.

The relative movements of the mouse on the surface are applied to the position of the pointer on the screen, which signals the point where actions of the user take place, so hand movements are replicated by the pointer.Clicking or pointing (stopping movement while the cursor is within the bounds of an area) can select files, programs or actions from a list of names, or (in graphical interfaces) through small images called "icons" and other elements. For example, a text file might be represented by a picture of a paper notebook and clicking while the cursor points at this icon might cause a text editing program to open the file in a window.

Different ways of operating the mouse cause specific things to happen in the GUI:

  • Point: stop the motion of the pointer while it is inside the boundaries of what the user wants to interact with. This act of pointing is what the "pointer" and "pointing device" are named after. In web design lingo, pointing is referred to as "hovering." This usage spread to web programming and Android programming, and is now found in many contexts.
  • Click: pressing and releasing a button.
    • (left) Single-click: clicking the main button.
    • (left) Double-click: clicking the button two times in quick succession counts as a different gesture than two separate single clicks.
    • (left) Triple-click: clicking the button three times in quick succession counts as a different gesture than three separate single clicks. Triple clicks are far less common in traditional navigation.
    • Right-click: clicking the secondary button. In modern applications, this frequently opens a context menu.
    • Middle-click: clicking the tertiary button.
  • Drag: pressing and holding a button, and moving the mouse before releasing the button. This is frequently used to move or copy files or other objects via drag and drop; other uses include selecting text and drawing in graphics applications.
  • Mouse button chording or chord clicking:
    • Clicking with more than one button simultaneously.
    • Clicking while simultaneously typing a letter on the keyboard.
    • Clicking and rolling the mouse wheel simultaneously.
  • Clicking while holding down a modifier key.
  • Moving the pointer a long distance: When a practical limit of mouse movement is reached, one lifts up the mouse, brings it to the opposite edge of the working area while it is held above the surface, and then lowers it back onto the working surface. This is often not necessary, because acceleration software detects fast movement, and moves the pointer significantly faster in proportion than for slow mouse motion.
  • Multi-touch: this method is similar to a multi-touch touchpad on a laptop with support for tap input for multiple fingers, the most famous example being the Apple Magic Mouse.

Gestures

Users can also employ mice gesturally, meaning that a stylized motion of the mouse cursor itself, called a "gesture", can issue a command or map to a specific action. For example, in a drawing program, moving the mouse in a rapid "x" motion over a shape might delete the shape.

Gestural interfaces occur more rarely than plain pointing-and-clicking, and people often find them more difficult to use because they require finer motor control from the user. However, a few gestural conventions have become widespread, including the drag and drop gesture, in which:

  1. The user presses the mouse button while the mouse cursor points at an interface object
  2. The user moves the cursor to a different location while holding the button down
  3. The user releases the mouse button

For example, a user might drag-and-drop a picture representing a file onto a picture of a trash can, thus instructing the system to delete the file.

Standard semantic gestures include:

  • Crossing-based goal
  • Drag and drop
  • Menu traversal
  • Pointing
  • Mouseover (pointing or hovering)
  • Selection

Specific uses

Other uses of the mouse's input occur commonly in special application domains. In interactive three-dimensional graphics, the mouse's motion often translates directly into changes in the virtual objects' or camera's orientation. For example, in the first-person shooter genre of games (see below), players usually employ the mouse to control the direction in which the virtual player's "head" faces: moving the mouse up will cause the player to look up, revealing the view above the player's head. A related function makes an image of an object rotate so that all sides can be examined. 3D design and animation software often modally chord many different combinations to allow objects and cameras to be rotated and moved through space with the few axes of movement mice can detect.

When mice have more than one button, the software may assign different functions to each button. Often, the primary (leftmost in a right-handed configuration) button on the mouse will select items, and the secondary (rightmost in a right-handed) button will bring up a menu of alternative actions applicable to that item. For example, on platforms with more than one button, the Mozilla web browser will follow a link in response to a primary button click, will bring up a contextual menu of alternative actions for that link in response to a secondary-button click, and will often open the link in a new tab or window in response to a click with the tertiary (middle) mouse button.


Types


Mechanical mice

The German company Telefunken published on their early ball mouse on 2 October 1968.Telefunken's mouse was sold as optional equipment for their computer systems. Bill English, builder of Engelbart's original mouse,created a ball mouse in 1972 while working for Xerox PARC.

The ball mouse replaced the external wheels with a single ball that could rotate in any direction. It came as part of the hardware package of the Xerox Alto computer. Perpendicular chopper wheels housed inside the mouse's body chopped beams of light on the way to light sensors, thus detecting in their turn the motion of the ball. This variant of the mouse resembled an inverted trackball and became the predominant form used with personal computers throughout the 1980s and 1990s. The Xerox PARC group also settled on the modern technique of using both hands to type on a full-size keyboard and grabbing the mouse when required.

The ball mouse has two freely rotating rollers. These are located 90 degrees apart. One roller detects the forward-backward motion of the mouse and the other the left-right motion. Opposite the two rollers is a third one (white, in the photo, at 45 degrees) that is spring-loaded to push the ball against the other two rollers. Each roller is on the same shaft as an encoder wheel that has slotted edges; the slots interrupt infrared light beams to generate electrical pulses that represent wheel movement. Each wheel's disc has a pair of light beams, located so that a given beam becomes interrupted or again starts to pass light freely when the other beam of the pair is about halfway between changes.

Simple logic circuits interpret the relative timing to indicate which direction the wheel is rotating. This incremental rotary encoder scheme is sometimes called quadrature encoding of the wheel rotation, as the two optical sensors produce signals that are in approximately quadrature phase. The mouse sends these signals to the computer system via the mouse cable, directly as logic signals in very old mice such as the Xerox mice, and via a data-formatting IC in modern mice. The driver software in the system converts the signals into motion of the mouse cursor along X and Y axes on the computer screen.

The ball is mostly steel, with a precision spherical rubber surface. The weight of the ball, given an appropriate working surface under the mouse, provides a reliable grip so the mouse's movement is transmitted accurately. Ball mice and wheel mice were manufactured for Xerox by Jack Hawley, doing business as The Mouse House in Berkeley, California, starting in 1975. Based on another invention by Jack Hawley, proprietor of the Mouse House, Honeywell produced another type of mechanical mouse.Instead of a ball, it had two wheels rotating at off axes. Key Tronic later produced a similar product.

Modern computer mice took form at the École Polytechnique Fédérale de Lausanne (EPFL) under the inspiration of Professor Jean-Daniel Nicoud and at the hands of engineer and watchmaker André Guignard. This new design incorporated a single hard rubber mouseball and three buttons, and remained a common design until the mainstream adoption of the scroll-wheel mouse during the 1990s. In 1985, René Sommer added a microprocessor to Nicoud's and Guignard's design. Through this innovation, Sommer is credited with inventing a significant component of the mouse, which made it more "intelligent"; though optical mice from Mouse Systems had incorporated microprocessors by 1984.

Another type of mechanical mouse, the "analog mouse" (now generally regarded as obsolete), uses potentiometers rather than encoder wheels, and is typically designed to be plug compatible with an analog joystick. The "Color Mouse", originally marketed by RadioShack for their Color Computer (but also usable on MS-DOS machines equipped with analog joystick ports, provided the software accepted joystick input) was the best-known example.

Optical and laser mice

Early optical mice relied entirely on one or more light-emitting diodes (LEDs) and an imaging array of photodiodes to detect movement relative to the underlying surface, eschewing the internal moving parts a mechanical mouse uses in addition to its optics. A laser mouse is an optical mouse that uses coherent (laser) light.

The earliest optical mice detected movement on pre-printed mousepad surfaces, whereas the modern LED optical mouse works on most opaque diffuse surfaces; it is usually unable to detect movement on specular surfaces like polished stone. Laser diodes provide good resolution and precision, improving performance on opaque specular surfaces. Later, more surface-independent optical mice use an optoelectronic sensor (essentially, a tiny low-resolution video camera) to take successive images of the surface on which the mouse operates. Battery powered, wireless optical mice flash the LED intermittently to save power, and only glow steadily when movement is detected.



Inertial and gyroscopic mice

Often called "air mice" since they do not require a surface to operate, inertial mice use a tuning fork or other accelerometer (US Patent 4787051) to detect rotary movement for every axis supported. The most common models (manufactured by Logitech and Gyration) work using 2 degrees of rotational freedom and are insensitive to spatial translation. The user requires only small wrist rotations to move the cursor, reducing user fatigue or "gorilla arm".

Usually cordless, they often have a switch to deactivate the movement circuitry between use, allowing the user freedom of movement without affecting the cursor position. A patent for an inertial mouse claims that such mice consume less power than optically based mice, and offer increased sensitivity, reduced weight and increased ease-of-use. In combination with a wireless keyboard an inertial mouse can offer alternative ergonomic arrangements which do not require a flat work surface, potentially alleviating some types of repetitive motion injuries related to workstation posture.


3D mice

Also known as bats, flying mice, or wands,these devices generally function through ultrasound and provide at least three degrees of freedom. Probably the best known example would be 3Dconnexion ("Logitech's Space Mouse") from the early 1990s. In the late 1990s Kantek introduced the 3D RingMouse. This wireless mouse was worn on a ring around a finger, which enabled the thumb to access three buttons. The mouse was tracked in three dimensions by a base station. Despite a certain appeal, it was finally discontinued because it did not provide sufficient resolution.

One example of a 2000s consumer 3D pointing device is the Wii Remote. While primarily a motion-sensing device (that is, it can determine its orientation and direction of movement), Wii Remote can also detect its spatial position by comparing the distance and position of the lights from the IR emitter using its integrated IR camera (since the nunchuk accessory lacks a camera, it can only tell its current heading and orientation). The obvious drawback to this approach is that it can only produce spatial coordinates while its camera can see the sensor bar. More accurate consumer devices have since been released, including the PlayStation Move, the Razer Hydra, and the controllers part of the HTC Vive virtual reality system. All of these devices can accurately detect position and orientation in 3D space regardless of angle relative to the sensor station.

A mouse-related controller called the SpaceBall has a ball placed above the work surface that can easily be gripped. With spring-loaded centering, it sends both translational as well as angular displacements on all six axes, in both directions for each. In November 2010 a German Company called Axsotic introduced a new concept of 3D mouse called 3D Spheric Mouse. This new concept of a true six degree-of-freedom input device uses a ball to rotate in 3 axes and an elastic polymer anchored tetrahedron inspired suspension for translating the ball without any limitations. A contactless sensor design uses a magnetic sensor array for sensing three aches translation and two optical mouse sensors for three aches rotation. The special tetrahedron suspension allows a user to rotate the ball with the fingers while input translations with the hand-wrist motion.




Share:

0 comments:

Post a Comment

Translate

Followers